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Abstract We present here the recent update of AutoMotif
Server (AMS 2.0) that predicts post-translational modification
sites in protein sequences. The support vector machine (SVM)
algorithm was trained on data gathered in 2007 from various
sets of proteins containing experimentally verified chemical
modifications of proteins. Short sequence segments around a
modification site were dissected from a parent protein, and
represented in the training set as binary or profile vectors. The
updated efficiency of the SVM classification for each type of
modification and the predictive power of both representations
were estimated using leave-one-out tests for model of general
phosphorylation and for modifications catalyzed by several
specific protein kinases. The accuracy of the method was
improved in comparison to the previous version of the service
(Plewczynski et al., “AutoMotif server: prediction of single
residue post-translational modifications in proteins”, Bioin-
formatics 21: 2525–7, 2005). The precision of the updated
version reached over 90% for selected types of phosphoryla-
tion and was optimized in trade of lower recall value of the
classification model. The AutoMotif Server version 2007 is

freely available at http://ams2.bioinfo.pl/. Additionally, the
reference dataset for optimization of prediction of phosphor-
ylation sites, collected from the UniProtKB was also
provided and can be accessed at http://ams2.bioinfo.pl/data/.
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Computational methods for prediction
of phosphorylation sites in proteins

Phosphorylation is one of the major types of post-
tranlational modification of hydroxyl groups in proteins.
The attachment of a phosphorus group to aliphatic (serine,
threonine) or aromatic (phenylalanine) amino acids influ-
ences on the function of proteins by modifying their local
general physicochemical properties and by controlling the
behavior of a protein in a living cell, for example by
activating or inactivating an enzyme [1]. Phosphorylation
has proven to be an important mechanism for controlling
intracellular processes. Athough many protein kinases are
now known, the identification of their potential biological
targets is still ongoing research. Relatively high substrate
specificity of protein kinases ensures correct transmission
of signals in cells. Such methods may provide rapid
automatic annotations, which then in turn can be used as
guidelines for further experimental discoveries.

The experimental verification of protein kinases’ sub-
strates and their corresponding phosphorylation sites is
highly non-trivial and time-consuming. The rapid increase
in genomic information and the pressure for the transla-
tional clinical research requires new automatic techniques
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to investigate protein modifications. Although the structural
determinants of a phosphrylated amino acids seems to be an
important criteria for an effective phosphorylation, the
recent studies showed that in most cases protein sequence
is quite sufficient to select modified sites. Therefore most in
silico methods process local sequence information around
phosphorylated sites.

The specificity of protein kinases is largely determined
by the primary sequence of the target site. The simplest
approach utilized in ELM server at http://elm.eu.org/ [2]
represents local sequence neighborhoods of phosphorylated
sites by regular expressions. In addition, ELM applies some
context-based filters (taxonomic range, cell compartment
and globular organization) in order to improve accuracy of
the prediction by filtering out ‘disallowed’ predictions. The
overall usability of the method is limited, due to the low
information content of the predicted sites. Therefore other
approaches focus, instead of single regular expression
based description of short sequence fragments, on more
advanced statistical description of local neighborhood of
known modification sites. These methods allow in more
rigorous way to calculate reliability scores.

ScanSite [3] finds sequence motifs that are recognized
by signaling domains, phosphorylated by several kinases or
which interact with specific proteins or ligands. The
position-specific scoring matrixes are constructed from
peptide libraries or phage displays. The conserved sequence
motifs represent important biochemical properties or bio-
logical functions, as it is presented in PRINTS database [4],
or eMOTIF [5, 6]. These resources contain multiple
sequence alignments from BLOCKS+ database [7–9].

Consensus approaches combine several signature recog-
nition methods to scan a given query protein sequence
against observed protein signatures. Each of such methods
returns its own lists of hits and then the hits are combined
in a consensus prediction. The PROSITE tools [10–12]
recognize short sequence motifs by combining ScanProsite
[13, 14], PRATT [15], PPSearch, PROSCAN [16, 17] and
PPscan. The InterProScan [18, 19] classifies proteins using
different member databases by building the consensus from
various databases instead of various in silico methods. Balla
et al. [20] provide the overview of many short motifs of post-
translational modifications, involved in protein-protein inter-
actions or protein trafficking in cell. The motif database
comprises over 300 sequence motifs as well as offers a search
tool for detection of these motifs in proteins. Ahmad et al. [21]
included the knowledge on three-dimensional structures of
proteins in the prediction of post-translational modifications,
and suggested that structural changes are dynamic and can
result in temporary conformational changes. These changes
can interfere with many functions of proteins, as it was
demonstrated for phosphorylation [21]. In the work of
Senawongse et al. [22] a hidden Markov models (HMM)

allowed for selection of important sequence motifs and the
appropriate machine learning algorithm of the support vector
machine (SVM) was used to classify the functional and
nonfunctional feature motifs. The authors proved that
consensus method of machine learning and sequence motif
identification (HMM) can provide much better accuracy than
prediction using sequence motifs or machine learning
aproaches alone [22].

Those results strongly supported the use of machine
learning algorithms for prediction of phosphorylation sites
in proteins. The NetPhos 2.0 server applies neural networks
trained on fragments of protein sequences flanking post-
translational modification sites from PhosphoBase resour-
ces [23, 24] to predict serine, threonine, and tyrosine
phosphorylation sites in eukaryotic proteins [24, 25]. The
sequence specificities of various protein kinases are
calculated for nine amino acid segments surrounding a
phosphorylation site. In the PPSP (Prediction of PK-
specific Phosphorylation site) server a similar approach
based on Bayesian decision theory (BDT) was used to
predict potential phosphorylation sites [26]. In comparison
with previously mentioned tools (Scansite, NetPhosK,
KinasePhos and GPS) the service is more accurate and
includes phosphorylation motifs of several additional
protein kinases (TRK, mTOR, SyK and MET/RON) [26].
Li et al. used various algorithms of machine learning in
prediction of specific post-translational modifications. For
instance, the k-nearest neighbor (k-NN) method with
Manhattan distance was used for prediction of phosphory-
lated amino acids [27]. Authors used a simple representa-
tion of sequence motifs, as calculated by BLOSUM62
similarity scores [27]. In the program PAIL the lysine
acetylation is predicted by Bayesian discriminant method
(BDM) algorithm with the accuracy of over 85% in the test
proided by the authors [28]. Recently, the new resource
dbPTM (http://dbPTM.mbc.nctu.edu.tw/) was developed
[29]. The dbPTM database compiles information from
Swiss-Prot, PhosphoELM, and O-GLYCBASE on various
types of protein post-translational modifications. Additionally,
it contains detailed physicochemical information on catalytic
sites, solvent accessibility, protein secondary and tertiary
structures, protein domains and protein variants. All instances
are experimentally validated, yet only three types of mod-
ifications, i.e., phosphorylation, glycosylation, and sulfation,
are assigned for all proteins from Swiss-Prot database.

Those recent advances of in silico methods [20–22, 26–34]
clearly justify the directions for further development of
computational methods of machine learning trained on
available experimentally verified data to predict phosphory-
lated residues in proteins. The efficient extraction of the most
predictive features from amino acid sequence for further
computational modeling is now one of the most challenging
tasks of the postgenomic era.
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Here we present an updated version of AutoMotif Server
that includes an revised methodology and an improved
training dataset. The service uses a supervised support
vector machine approach to predict various types of
phosphorylation sites in proteins. It is based on the
classification of the available information on phosphoryla-
tions and other post-translational modifications obtained
from the UniProt database version 06.2007. This classifi-
cation is used then to predict phosphorylation sites in
proteins. The accuracy of the method was significantly
improved in comparison to the previous version, the
precision is now over 90% for selected types of phosphor-
ylation. The training database of short sequence fragments
corresponding to known phosphorylation types is publicly
available for download from our web pages.

The new reference database of PTM sites for training
machine learning

The AMS method was trained on known experimental
instances of post-translational modification sites available
in the 06.2007 version of UniProt (Universal Protein
Resource) database [35]. In order to maximize the
classification accuracy of applied models all sites annotated
as “probable”, “potential”, and “by similarity” were
omitted. The remaining sites were assembled to the dataset
of positive instances and fragments of nine amino acids in
length centered on the annotated residues were dissected
from corresponding proteins sequences. If modified amino
acids were located in the N- or C-termini of proteins,
additional “X’ residues were introduced, so the central
position of annotated residue in each segment was
preserved. Redundant samples were removed from training
data (with an exception for different BLAST profile in
PROFILE representation as described below). The dataset
with negative instances was built from native protein
sequences surrounding a matched central residue not
annotated as modified. Negative instances were prepared
from the same proteins that contained ”true” PTMs. The
resulting datasets that can be used for training various
machine learning algorithms are publicly available at http://
ams2.bioinfo.pl/data/.

The two datasets containing positive and negative
instances of each type of functional motifs were used for
the training of SVM. All sequence segments from both sets
were projected (embedded) on the same abstract multidi-
mensional space in order to build detailed sequence models
for each modification. In the current version the available
representations were restricted to one optimal (in terms of
the speed of calculation) generic representation of a short
protein sequence segment. This representation (the binary
one called here as BINARY) encodes each position of a

segment as a long 20 dimensional vector of discrete values
(0 and 1); the number of dimensions corresponds to the
number of types of amino acids. The 1 value in a vector is
taken if the certain type of amino acid is present at the
certain position in a segment and 0 for all other types. This
representation uses nine residues long segments and thus
has dimension equal to 180 (number of positions multiplied
by the number of dimensions of each vector). For each
given segment only nine coordinates were equal to 1 (one
for each position in a segment represented by 20 values),
while all other had a value of 0. The vectors are normalized
for each position in a segment separately leaving one
dimensional scalar value equal to the normalized sequence
preference for it. Normalized preferences were calculated
separately for nine positions within a segment and the value
for a given amino acid at each position of a segment was
calculated by dividing the observed probability to find this
amino acid at the exact position in positive segments by the
observed probability to find it in the negatives [36–38].

Accuracy of updated AMS for phosphorylation sites

The AMS applies a support vector machine to predict post-
translational modifications in protein sequences. The
supervised machine learning algorithm [39–41] was first
trained on known instances after embedding them into
multidimensional feature space. In order to extract relevant
information from the heterogeneous data, SVM tries to
separate a given set of binary labeled training vectors with
an optimal hyperplane. The optimum is reached for
hyperplane that maximizes the separating margin between
the two classes of the training vectors having relatively
small number of support vectors. For the detailed descrip-
tion of support vector machine please refer to [36–47].

The performance of a classification was described by
three measures of accuracy: classification error E ¼½
100%* fpþ fnð Þ= tpþ fpþ tnþ fnð Þ�, recall R ¼ 100%*½
tpð Þ= tpþ fpð Þ�, and precision P ¼ 100% � tpð Þ= tpþ fpð Þ½ �,
where tp is the number of true positives, fp is the number of
false positives, tn is the number of true negatives, and fn is
the number of false negatives. The classification error E
was used to provide an overall error measure, whereas
recall R corresponded to the percentage of correct pre-
dictions (the fraction of correct predictions), and precision
P measured the percentage of observed positives that are
correctly predicted (the measure of the reliability of
prediction of positive instances). These measures of
accuracy can be calculated using conservative but easy to
compute Xi-Alpha estimates [48] and more precise but
computationally intensive the leave-one-out procedure. The
leave-one-out test was applied, by removing from the training
data one sample, constructing the model on the basis of the
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remaining training dataset and then validating the model on
the removed sample. The resulting error estimators were
averaged over all suchmodels (for all positive and all negative
instances).

We collected results for both types of projections of
sequence fragments, separately for each considered type of
phosphorylation. The accuracy of the previous version is
presented in Table 1. Results for SVM with linear kernel
and BINARY representation of input data are shown in
Table 2. The results for polynomial kernel with PROFILE
representation are given in Table 3. According to the
obtained results the polynomial kernel with PROFILE
representation is the best type of kernel for all types of
modifications. The linear kernel with BINARY representa-
tion was more effective only when the number of training
cases was large. This can be explained by the high
sequence similarity between tested instances in the larger
collections of positives. The linear kernel function in the
case of more complicated sequence signatures of phosphor-
ylated sites is not efficient, or it cannot produce any model
at all. However, in some cases (PKA or PKC phosphory-
lation sites) SVM models of this type reach efficiency of
the polynomial kernel.

The AutoMotif Server 2.0 (version 2007)

The AutoMotif Server (AMS) takes the sequence of a query
protein as an input and predicts its phosphorylation sites. In
our approach we consider only sequence information,
because in most cases only the sequence of a potential
target protein is known. The server uses the SVM
classification models constructed as described in the
previous section. Firstly, it dissects a query protein into

overlapping short segments of nine amino acids. For each
sequence segment a score using SVM model constructed
according to its cost function is assigned. Residues that
have the score (the value of cost function which is
described in detail on the server’s Web page) higher than
a given cut-off value are annotated as plausible modifica-
tion sites. The points representing their sequence segments
are lying in the region classified as positive by the SVM
model’s hyperplane within a given cut-off as the margin
value. We use only one, the most effective type of the
kernel (the polynomial one) in the web server. Our method
is a simple one-vote-wins approach, where we annotate all
segments with positive verification by at least one model.

AMS accepts input sequences in the one-letter code in
capital letters: (ACDEFGHIKLMNPQRSTVWY) with an
additional code (X) for marking empty and unknown
positions in a protein chain or positions that extends a
sequence segment outside chain’s ends. The user can input
sequences by submiting text file, entering the SWISS-
PROT/TrEMBL identifier (or accession number) or provid-
ing seqeuences of query proteins in the text box. It is
recommended to use the complete protein sequence, not
short fragments of it.

By default the server predicts all types of phosphorylation
sites that are available in the Swiss-Prot database, such as
phosphorylation by PKC, PKA, CK1, CK2, and CDC2
kinases. Users can limit their searches by choosing particular
type of functional motif from the drop-down list on the
server’s main page (for example phosphorylation sites in
general or by specified protein kinase). Two types of search
procedures are available: identity search and scan based on
SVM method. The first one performs a simple search to
identify exact (in terms of sequence) matches of nine residues
segments from query protein and the database of positives for

Table 1 The training accuracy for support vector machine supervised learning on data representation from AMS 1.0 (ver. 2004)

Functional motif type Number of
proteins

Number of
positives/negatives

Recall/precision of
the best method

The best method Recall/precision of
the second best method

phosphorylation by PKA 67 86 42% LOOKUP 42%
14353 86% 77%

phosphorylation by PKC 49 56 18% BLOSUM+LOOKUP 18%
14368 91% 83%

phosphorylation by CDC2 18 41 29% BIN+LOOKUP 24%
14375 32% 33%

phosphorylation by CK2 35 62 21% SPARSE+LOOKUP 18%
11746 39% 48%

phosphorylation by CK 44 85 13% SPARSE+LOOKUP 11%
11739 41% 36%

The results are obtained using SVM learning with polynomial kernel. The second column presents the number of proteins used in training. The
third column shows the number of positive and negative instances in training. The recall and precision values for the best method are in the fourth
column. The name of the best method is listed in the fifth column. The last column provides the recall and precision values for the second best
method.
AMS - version 2004:
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that type of modification. The second one runs SVM search
with a collection of various embedding methods.

The output page of the service contains two main parts.
The first one provides a detailed description of each
prediction method and post-translational modification pat-
tern. For each SVM model the server lists a number of
positive and negative instances used in training and the

precision and recall errors calculated during the training
phase. The second part of the output provides results of
prediction for each model. It contains information about the
protein sequence, a local segment sequence predicted as a
modificated site, its position and the output score with
value in the range [0.000–5.000], where higher output
scores correspond to higher confidence of the prediction.

Table 3 The training accuracy for support vector machine supervised learning with polynomial kernel on PROFILE data representation

Phosphorylation type Substrate Recall 2004 Precision 2004 Recall 2007 Precision 2007

Phosphoserine S x x 19% 78%
Phosphothreonine T x x 7% 95%
Phosphotyrosine Y x x 10% 95%
Phosphoserine PKC S x x 4% 100%
Phosphoserine PKA S x x 12% 88%
Phosphotyrosine autocatalysis Y x x 51% 77%
Phosphoserine CK2 S 11% 53% 6% 80%
Phosphothreonine autocatalysis T x x 22% 100%
Phosphoserine autocatalysis S x x 3% 100%
Phospho PKA S T 41% 75% 14% 86%
Phospho PKC S T 17% 83% 5% 100%
Phospho autocatalysis Y H S T 33% 71% 43% 96%
Phospho CDC2 S T 9% 20% 13% 78%

The types of phosphorylation that were not present in the previous version of Swiss-Prot database are marked by “x” in Recall/Precision columns
of AMS 1.0 server (ver 2004).

Table 2 The training accuracy for support vector machine supervised learning on data representation from AMS 2.0 (ver. 2007)

PTM type Protein agent Kernel Positives Negatives Error Precision Recall

Phosphorylation Autocatalysis Linear 229 10000 9.09 0 0
Phosphorylation autocatalysis Polynomial (s a*b+c)^d 229 10000 7.94 96.15 13.16
Phosphorylation CDC2 Linear 84 8290 3.14 80.9 85.71
Phosphorylation CDC2 Polynomial (s a*b+c)^d 84 8290 3.25 95 67.86
Phosphorylation PKA Linear 121 10000 4.96 77.78 63.64
Phosphorylation PKA Polynomial (s a*b+c)^d 121 10000 4.96 87.88 52.73
Phosphorylation PKC Linear 118 7931 6.66 84.85 32.56
Phosphorylation PKC Polynomial (s a*b+c)^d 118 7931 7.93 92.31 13.95
Phosphoserine – Linear 12373 10000 19.35 81.58 97.14
Phosphoserine – Polynomial (s a*b+c)^d 12373 10000 9.48 91.34 97.06
Phosphoserine autocatalysis Linear 64 4392 8.94 100 1.67
Phosphoserine autocatalysis Polynomial (s a*b+c)^d 64 4392 8.33 85.71 10
Phosphoserine CK2 Linear 74 2879 7.49 70.97 29.73
Phosphoserine CK2 Polynomial (s a*b+c)^d 74 2879 7 100 22.97
Phosphoserine PKA Linear 105 6750 4.59 78.31 68.42
Phosphoserine PKA Polynomial (s a*b+c)^d 105 6750 4.11 98.15 55.79
Phosphoserine PKC Linear 105 4146 7.47 80.95 23.29
Phosphoserine PKC Polynomial (s a*b+c)^d 105 4146 8.47 69.23 12.33
Phosphothreonine – Linear 2295 10000 19.52 60.86 43.22
Phosphothreonine – Polynomial (s a*b+c)^d 2295 10000 15.9 75.46 46.12
Phosphothreonine autocatalysis Linear 61 2490 9.09 0 0
Phosphothreonine autocatalysis Polynomial (s a*b+c)^d 61 2490 9.09 0 0
Phosphotyrosine – Linear 1037 10000 14.11 0 0
Phosphotyrosine – Polynomial (s a*b+c)^d 1037 10000 13.32 71.2 9.32
Phosphotyrosine autocatalysis Linear 92 2772 9.09 0 0
Phosphotyrosine autocatalysis Polynomial (s a*b+c)^d 92 2772 9.86 12.5 1.41
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Summary

The current version of AMS server allows for quick and more
accurate prediction of protein modification sites. The high
overall precision allows a user to gain deep insight in plausible
phosphorylation characteristics of proteins of interest. The
method was trained on newly released experimental data from
Swiss-Prot database. The classification is now optimized for
higher precision in trade of lower recall value. The current
version of algorithm can be used independently from the Web

interface upon request from authors and can be applied to
large scale genome analyses.

In addition to previous versions of AutoMotif Server we
have developed classification models for protein sequence
fragments taken from Phospho.ELM database [49]. The
Phospho.ELM resource available at http://phospho.elm.eu.org
contains a variety of experimentally verified phosphorylation
sites manually curated from the literature. Phospho.ELM
constitutes the largest searchable collection of phosphorylation
sites available to the research community. The typical

Table 4 The training accuracy for support vector machine supervised learning with polynomial or linear kernel on experimental data from
Phospho.ELM

Protein agent Kernel Positives Negatives Error Precision Recall

General Linear 12103 3546 17.53 83.22 96.88
AMPK_group Polynomial (s a*b+c)^d 32 320 8.52 100 6.25
ATM Linear 57 570 2.55 81.54 92.98
ATM Polynomial (s a*b+c)^d 57 570 2.87 91.49 75.44
CaM-KIIalpha Linear 36 360 5.81 88.24 41.67
CaM-KII_group Linear 55 550 8.43 66.67 14.55
CaM-KII_group Polynomial (s a*b+c)^d 55 550 7.93 88.89 14.55
CDK1 Linear 139 1390 7.52 63.04 41.73
CDK1 Polynomial (s a*b+c)^d 139 1390 7.91 65 28.06
CDK2 Polynomial (s a*b+c)^d 70 700 9.22 45.45 7.14
CDK_group Linear 102 1020 6.33 67.03 59.8
CDK_group Polynomial (s a*b+c)^d 102 1020 5.97 79.66 46.08
CK2 alpha Linear 118 1180 7.24 67.65 38.98
CK2 alpha Polynomial (s a*b+c)^d 118 1180 7.24 73.08 32.2
CK2_group Linear 240 2400 6.67 72.22 43.33
CK2_group Polynomial (s a*b+c)^d 240 2400 6.21 82.76 40
GSK-3beta Linear 49 490 7.98 75 18.37
GSK-3_group Linear 32 320 8.52 66.67 12.5
IGF1R Linear 23 118 12.06 100 26.09
InsR Polynomial (s a*b+c)^d 45 213 17.05 60 6.67
Lck Linear 51 510 8.73 60 11.76
MAPK1 Linear 170 1700 6.95 67.24 45.88
MAPK1 Polynomial (s a*b+c)^d 170 1700 7.11 67.29 42.35
MAPK3 Linear 83 830 4.16 78.48 74.7
MAPK3 Polynomial (s a*b+c)^d 83 830 4.71 88.46 55.42
MAPK8 Linear 34 340 9.63 41.67 14.71
MAPK_group Linear 51 510 5.53 77.78 54.9
MAPK_group Polynomial (s a*b+c)^d 51 510 7.13 100 21.57
PDK-1 Linear 28 280 5.84 85.71 42.86
PDK-1 Polynomial (s a*b+c)^d 28 280 6.82 81.82 32.14
PKA alpha Linear 33 330 6.06 82.35 42.42
PKA alpha Polynomial (s a*b+c)^d 33 330 7.99 83.33 15.15
PKA_group Linear 325 3250 4.9 82.61 58.46
PKA_group Polynomial (s a*b+c)^d 325 3250 4.36 90.43 58.15
PKB_group Linear 84 840 5.74 65.05 79.76
PKB_group Polynomial (s a*b+c)^d 84 840 4.65 87.27 57.14
PKC alpha Linear 132 1320 7.99 72.22 19.7
PKC alpha Polynomial (s a*b+c)^d 132 1320 8.4 77.78 10.61
PKC_group Linear 238 2380 7.37 80 25.21
PKC_group Polynomial (s a*b+c)^d 238 2380 7.33 84.85 23.53
Syk Polynomial (s a*b+c)^d 45 316 13.57 30 6.67

The linear motif size was taken as nine amino acids, and we used BINARY representation of amino acids.
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Phospho.ELM entry stores information about substrate pro-
teins with the exact positions of residues known to be phos-
phorylated by cellular kinases, literature references, subcellular
compartment, tissue distribution, and information about the
signaling pathways or protein interactions. Phospho.ELM
version 2.0 contains 1703 phosphorylation site instances for
556 phosphorylated proteins. Table 4 contain the accuracy of
support vector machine algorithm trained by us on various
types of phosphorylation taken from the Phospho.ELM dataset.

One of the main problems of post-translational modifi-
cation prediction is the insufficient number of experimen-
tally verified instances for each type of modifications. On
the other hand, even using the updated experimental data,
the further development of our automatic method for
functional sites annotation should receive a significant
improvement when using statistical algorithms in order to
quantify in a more rigorous way the results. In our approach
the number of support vectors for some models is large,
which is explained by the large dimensionality of the
embedded space in such cases and the complicated shape of
the separation hyperplane between positive and negative
instances. The number of support vectors can be lowered
when one chooses low dimensional initial encoding of the
amino acids into the general physicochemical properties (like
polarity, volume, surface area, bulkiness or refractivity -
compare work of Lohmann et al. [50]).
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